贝叶斯推断及其互联网应用(一):定理简介

浏览量:25 次

一年前的这个时候,我正在翻译Paul Graham的《黑客与画家》。

那本书的第八章,写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版)。

我没完全看懂那一章。当时是硬着头皮,按照字面意思把它译出来的。虽然译文质量还可以,但是心里很不舒服,下决心一定要搞懂它。

一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并不难。原理的部分相当容易理解,不需要用到高等数学。

下面就是我的学习笔记。需要声明的是,我并不是这方面的专家,数学其实是我的弱项。欢迎大家提出宝贵意见,让我们共同学习和提高。

=====================================

贝叶斯推断及其互联网应用

作者:阮一峰

一、什么是贝叶斯推断

贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。

它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。

贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。正是因为它的主观性太强,曾经遭到许多统计学家的诟病。

贝叶斯推断需要大量的计算,因此历史上很长一段时间,无法得到广泛应用。只有计算机诞生以后,它才获得真正的重视。人们发现,许多统计量是无法事先进行客观判断的,而互联网时代出现的大型数据集,再加上高速运算能力,为验证这些统计量提供了方便,也为应用贝叶斯推断创造了条件,它的威力正在日益显现。

二、贝叶斯定理

要理解贝叶斯推断,必须先理解贝叶斯定理。后者实际上就是计算"条件概率"的公式。

所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

因此,

同理可得,

所以,

这就是条件概率的计算公式。

三、全概率公式

由于后面要用到,所以除了条件概率以外,这里还要推导全概率公式。

假定样本空间S,是两个事件A与A'的和。

上图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

在上一节的推导当中,我们已知

所以,

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

四、贝叶斯推断的含义

对条件概率公式进行变形,可以得到如下形式:

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

所以,条件概率可以理解成下面的式子:

  后验概率 = 先验概率 x 调整因子

这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"

 
®关于本站文章™ | 若非注明原创,默认 均为网友分享文章,如有侵权,请联系我们™
㊣ 本文永久链接: 贝叶斯推断及其互联网应用(一):定理简介